Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Endocrinol (Lausanne) ; 13: 801260, 2022.
Article in English | MEDLINE | ID: covidwho-1731767

ABSTRACT

Type 2 diabetes (T2D) patients with SARS-CoV-2 infection hospitalized develop an acute cardiovascular syndrome. It is urgent to elucidate underlying mechanisms associated with the acute cardiac injury in T2D hearts. We performed bioinformatic analysis on the expression profiles of public datasets to identify the pathogenic and prognostic genes in T2D hearts. Cardiac RNA-sequencing datasets from db/db or BKS mice (GSE161931) were updated to NCBI-Gene Expression Omnibus (NCBI-GEO), and used for the transcriptomics analyses with public datasets from NCBI-GEO of autopsy heart specimens with COVID-19 (5/6 with T2D, GSE150316), or dead healthy persons (GSE133054). Differentially expressed genes (DEGs) and overlapping homologous DEGs among the three datasets were identified using DESeq2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses were conducted for event enrichment through clusterProfile. The protein-protein interaction (PPI) network of DEGs was established and visualized by Cytoscape. The transcriptions and functions of crucial genes were further validated in db/db hearts. In total, 542 up-regulated and 485 down-regulated DEGs in mice, and 811 up-regulated and 1399 down-regulated DEGs in human were identified, respectively. There were 74 overlapping homologous DEGs among all datasets. Mitochondria inner membrane and serine-type endopeptidase activity were further identified as the top-10 GO events for overlapping DEGs. Cardiac CAPNS1 (calpain small subunit 1) was the unique crucial gene shared by both enriched events. Its transcriptional level significantly increased in T2D mice, but surprisingly decreased in T2D patients with SARS-CoV-2 infection. PPI network was constructed with 30 interactions in overlapping DEGs, including CAPNS1. The substrates Junctophilin2 (Jp2), Tnni3, and Mybpc3 in cardiac calpain/CAPNS1 pathway showed less transcriptional change, although Capns1 increased in transcription in db/db mice. Instead, cytoplasmic JP2 significantly reduced and its hydrolyzed product JP2NT exhibited nuclear translocation in myocardium. This study suggests CAPNS1 is a crucial gene in T2D hearts. Its transcriptional upregulation leads to calpain/CAPNS1-associated JP2 hydrolysis and JP2NT nuclear translocation. Therefore, attenuated cardiac CAPNS1 transcription in T2D patients with SARS-CoV-2 infection highlights a novel target in adverse prognostics and comprehensive therapy. CAPNS1 can also be explored for the molecular signaling involving the onset, progression and prognostic in T2D patients with SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , Computational Biology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetic Cardiomyopathies/epidemiology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Animals , Calpain/genetics , Calpain/physiology , Comorbidity , Diabetes Mellitus, Type 2/physiopathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria, Heart/ultrastructure , Muscle Proteins/metabolism , Myocardium/chemistry , Myocardium/metabolism , Myocardium/ultrastructure , Prognosis , Sequence Analysis, RNA , Transcriptome
2.
Int J Infect Dis ; 105: 312-318, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1116860

ABSTRACT

BACKGROUND: Cardiac injury is frequently encountered in patients with coronavirus disease 2019 (COVID-19) and is associated with increased risk of mortality. Elevated troponin may signify myocardial damage and is predictive of mortality. This study aimed to assess the prognostic value of troponin above the 99th percentile upper reference limit (URL) for mortality, and factors affecting the relationship. METHODS: A comprehensive literature search of PubMed (MEDLINE), Scopus and Embase was undertaken, from inception of the databases until 16 December 2020. The key exposure was elevated serum troponin, defined as troponin (of any type) above the 99th percentile URL. The outcome was mortality due to any cause. RESULTS: In total, 12,262 patients from 13 studies were included in this systematic review and meta-analysis. The mortality rate was 23% (20-26%). Elevated troponin was observed in 31% (23-38%) of patients. Elevated troponin was associated with increased mortality [odds ratio (OR) 4.75, 95% confidence interval (CI) 4.07-5.53; P < 0.001; I2 = 19.9%]. Meta-regression showed that the association did not vary with age (P = 0.218), male gender (P = 0.707), hypertension (P = 0.182), diabetes (P = 0.906) or coronary artery disease (P = 0864). The association between elevated troponin and mortality had sensitivity of 0.55 (0.44-0.66), specificity of 0.80 (0.71-0.86), positive likelihood ratio of 2.7 (2.2-3.3), negative likelihood ratio of 0.56 (0.49-0.65), diagnosis odds ratio of 5 (4-5) and area under the curve of 0.73 (0.69-0.77). The probability of mortality was 45% in patients with elevated troponin and 14% in patients with non-elevated troponin. CONCLUSION: Elevated troponin was associated with mortality in patients with COVID-19 with 55% sensitivity and 80% specificity.


Subject(s)
COVID-19/mortality , Myocardium/chemistry , Troponin/blood , Biomarkers/blood , Female , Humans , Male , Prognosis , Reference Values , SARS-CoV-2 , Sensitivity and Specificity
3.
J Clin Pathol ; 74(8): 522-527, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-733145

ABSTRACT

AIMS: The global outbreak of COVID-19 has resulted in an increased mortality. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organs is still unclear. In this study, postmortem percutaneous biopsies of multiple organs from deceased patients were performed to understand the histopathological changes caused by COVID-19. METHODS: Biopsy specimens of pulmonary, cardiac, hepatic and lymphoid tissues were obtained from three patients, who died due to COVID-19 pneumonia. H&E stain, Masson trichrome stain, immunohistochemistry stain and in-situ hybridisation were used. RESULTS: Pulmonary damages caused by SARS-CoV-2 infection was diffuse alveolar damage (DAD). In the early phase, the histological findings were mainly those of exudative features of DAD. The later phase was characterised by organisation of DAD combined with bacterial pneumonia. No serious damage was found in the bronchiolar epithelium and submucosal glands. The hepatic tissue revealed features of ischaemic necrosis, but findings suggestive of mild lobular hepatitis were also observed. The lymphoid tissue revealed features of non-specific acute lymphadenitis. The cardiac tissue revealed changes of underlying disease. SARS-CoV-2 RNAs were not detected in hepatocytes, cholangiocytes and lymphocytes of lymph nodes. CONCLUSIONS: COVID-19 predominantly involves the pulmonary tissue, causes DAD and aggravates the cardiovascular disease. However, other extrapulmonary tissues did not reveal any virus-specific findings, but were affected by multiple factors. The findings in this report caution the pathologists that they should not mistakenly attribute all the histological features to CoV infection. Moreover, the clinicians should pay attention to the potentially injurious and correctable causes.


Subject(s)
COVID-19/pathology , Liver/pathology , Lung/pathology , Lymphoid Tissue/pathology , Myocardium/pathology , Aged , Aged, 80 and over , Biopsy, Large-Core Needle , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Fatal Outcome , Female , Humans , Immunohistochemistry , In Situ Hybridization , Lung/virology , Lymphoid Tissue/immunology , Male , Myocardium/chemistry , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL